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Using variables

Recall that when Racket evaluates a variable, the result is the value that the 

variable is bound to


‣ If we have (define x 10), then evaluating x gives us the value 10


‣ If we have (define (foo x) (- x y)), then evaluating foo gives us the 

procedure (λ (x) (- x y)) along with a way to get the value of y


Racket needs a way to look up values that correspond to variables: an 

environment



Environments

Environments are mappings from identifiers to values


There's a top-level environment containing many default mappings


‣ list ↦ #<procedure:list>  

(↦ is read as "maps to", #<procedure:xxx> is how DrRacket displays 

procedures)


‣ + ↦ #<procedure:+>


Each file in Racket (technically, a module) has an environment that extends the 

top-level environment that contains all of the defines in the file



Basic operations on environments

Lookup an identifier in an environment


Bind an identifier to a value in an environment


Extend an environment


‣ This creates a new environment with mappings from identifiers to values as 

well as a reference to the environment being extended


‣ The extended and original environment may both contain mappings for the 

same identifier


Modify the binding of an identifier in an environment (we will avoid doing this in 

this course)



Looking up an identifier in an environment

If an identifier has been bound in the current environment, its value is returned


Otherwise, if the current environment extends another environment, the 

identifier is (recursively) looked up in the other environment.


Otherwise, there's no binding for the identifier and an error is reported



Consider the environments where (A → B means A extends B).


 

What is the value of looking up count in the left-most environment?

A. Error: count is undefined in that environment


B. 3


C. A procedure
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Identifier Value

+ #<procedure:+>

count #<procedure>

max #<procedure>

… …

Identifier Value

name "steve"

count 3

max 27

Identifier Value

w -8

x 22

y 19

z 6



Adding a new mapping to an environment
(define identifier s-exp)

define will add identifier to the current environment and bind the value 

that results from evaluating s-exp to it


In any environment, an identifier may only be defined once


‣ except in the interpreter which lets you redefine identifiers




Adding a new mapping to an environment
(define (identifier params) body)

Recall that (define (foo x y) body) is the same as  

(define foo (λ (x y) body))  

in that it binds the value of the λ-expression, namely a closure, to foo

A closure keeps a reference to the current environment in which the λ-

expression was evaluated



Extending an environment
Calling a closure

Calling a closure extends the environment of the closure with the values of the 

arguments bound to the procedure's parameters


(define (sum lst)  
  (cond [(empty? lst) 0]  
        [else (+ (first lst) (sum (rest lst)))])) 
 
(define (average lst)  
  (/ (sum lst) (length lst)))  
 
Calling (average '(1 2 3)) extends the environment of average (namely the 

module's environment which contains mappings for sum and average) with the 

mapping lst ↦ '(1 2 3) and runs average with that environment



Example bindings
Shadowing a binding

(define (sum lst)  
  (cond [(empty? lst) 0]  
        [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
  (average (list sum x y)))  
 
(define (average lst)  
  (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure
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Extending an environment
(let ([id1 s-exp1] [id2 s-exp2]…) body)

let enables us to create some new bindings that are visible only inside body


(let ([x 37]        ; binds 37 to x  
      [y (foo 42)]) ; binds the result of (foo 42) to y  
  (if (< x y)  
      (bar x)  
      (bar y)))

x and y are only bound inside the body of the let expression


That is, the scope of the identifiers bound by let is body



(define (sum lst)

  (if (empty? lst)

      0

      (+ (first lst) (sum (rest lst)))))

(define (average lst)

  (/ (sum lst) (length lst)))

(let ([sum 10])

  (average (list 0 sum)))


While computing  

(average (list 0 sum)),  

which of the following is 

average's environment (arrow 

means points at an environment 

being extended)?
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lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environment

lst (list 0 sum) sum #<procedure>

average #<procedure>

Top-level environment

lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environmentsum 10

A.  

B.   

C.



Modifying a binding
(set! identifier s-exp)

set! (read "set bang") can modify an existing binding in an environment


(define (bar)  
  (define x 10) ; We can use define inside procedures  
  (writeln x) ; Output the value of x  
  (set! x 25)  
  (writeln x))


This outputs 10 on one line and then 25 on another


This type of side-effect makes reasoning about code much harder


Except for one time later in the semester, we're not going to be using set!


‣ (We won't actually need set!, it just makes things easier)



Variations on let



A common problem

When writing programs, it's not uncommon to define some local variables in 

terms of other local variables


Example: Return the elements of a list of numbers that are at least as large as 

the first element (the head) of the list, in reverse order


(define (at-least-as-large lst)  
  (cond [(empty? lst) empty]  
        [else  
          (let ([head (first lst)]  
                [bigger (filter (λ (x) (>= x head)) lst)])  
            (reverse bigger))]))

This doesn't work; we can't use head in the definition of bigger



The issue

The issue is the scope of the binding for head: just the body of the let

One (bad) work around would be to use multiple lets


(define (at-least-as-large lst)  
  (cond [(empty? lst) empty]  
        [else  
          (let ([head (first lst)])  
            (let ([bigger (filter (λ (x) (>= x head)) lst)])  
              (reverse bigger)))]))



Sequential let
(let* ([id1 s-exp1] [id2 s-exp2]…) body)

Later s-exps can use earlier ids, e.g., 

(let* ([x 5]  
       [y (foo x)]  
       [z (+ x y)])  
  (bar z y))



Another problem: recursion

Often, we're going to want to define a recursive procedure but we can't do that 

with let or let*


(let ([fact (λ (n)  
              (if (<= n 1)  
                  n  
                  (* n (fact (- n 1))))])  
  (fact 5))

We can't use fact in the definition of fact



Recursive let
(letrec ([id1 s-exp1] [id2 s-exp2]…) body)

All of the s-exps can refer to all of the ids


‣ This is used to make recursive procedures 

(letrec ([fact (λ (n)  
                 (if (<= n 1)  
                     n  
                     (* n (fact (- n 1))))])  
  (fact 5))



Recursive let drawback

The values of the identifiers we're binding can't be used in the bindings


Invalid (the value of x is used to define y)


‣ (letrec ([x 1]  
         [y (+ x 1)])  
  y)

Valid (the value of x isn't used to define y, only when y is called)


‣ (letrec ([x 1]  
         [y (λ () (+ x 1))])  
  (y))



We can use define inside procedures

(define (sum-of-squares lst)  
  (define (sq x) (* x x))  
  (cond [(empty? lst) 0]  
        [else (+ (sq (first lst))  
                 (sum-of-squares (rest lst)))]))



Avoiding defining sq each time
See also: premature optimization

(define sum-of-squares2  
  (let ([sq (λ (x) (* x x))])  
    (λ (lst)  
      (cond [(empty? lst) 0]  
            [else (+ (sq (first lst))  
                     (sum-of-squares2 (rest lst)))]))))

The environment of sum-of-squares2 contains sq whereas the environment 

for sum-of-squares is the module-level environment and sq is defined each 

time


Is this worth doing? Probably not. It's much harder to read



Accumulator-passing style



Loops and efficiency 

Compare a C (or Java) function to 

compute the factorial


int fact(int n) {  
  int product = 1;  
  while (n > 0) {  
    product *= n;  
    n -= 1;  
  }  
  return product;  
}

to our recursive Racket 

implementation


(define (fact n)  
  (if (<= n 1)  
      1  
      (* n  
         (fact (- n 1)))))

How do these differ?



In C, just one function call


In Racket, (fact 10) makes 10 calls to fact (the original one and then nine 

more)



Loops and efficiency

To be efficient, Racket internally converts all tail-recursions into loops


A function is tail-recursive if the last thing it does is to recurse and return the 

result of that recursion


Example: 

(define (foo x y)  
  (if (zero? x)  
    y  
    (foo (sub1 x) (+ x y))))


When the condition is satisfied, some-value is returned, otherwise foo is called 

again with some different parameters and that value is returned



Our factorial is not tail recursive

(define (fact n)  
  (if (<= n 1)  
      1  
      (* n  
         (fact (- n 1)))))

The last thing fact does is perform a multiplication; the recursion happens 

before the multiplication



Our factorial is not tail recursive

Given (fact 4), we end up with  

(fact 4) => (* 4 (fact 3))  
         => (* 4 (* 3 (fact 2)))  
         => (* 4 (* 3 (* 2 (fact 1))))  
         => (* 4 (* 3 (* 2 1)))  
         => (* 4 (* 3 2))  
         => (* 4 6)  
         => 24

We can see this in DrRacket



Solution: Use an accumulator
(Accumulator-passing style isn't the real name of this technique)

(define (fact2 n)  
  (define (fact-a n acc)  
    (if (<= n 1)  
        acc ; return the accumulator  
        (fact-a (sub1 n) (* n acc))))  
  (fact-a n 1))

Three things to notice


‣ We defined a recursive helper function that takes an additional param


‣ We provide an initial value for the accumulator in fact2's call to fact-a

‣ fact-a is tail-recursive



fact2 is tail-recursive

(fact2 4) => (fact-a 4 1)  
          => (fact-a 3 4)  
          => (fact-a 2 12)  
          => (fact-a 1 24)  
          => 24



We can use letrec instead of an inner define

(define (fact-3 n)  
  (letrec ([fact-a (λ (n acc)  
                     (if (<= n 1)  
                         acc  
                         (fact-a (sub1 n) (* n acc))))])  
    (fact-a n 1)))

(define fact-4  
  (letrec ([fact-a (λ (n acc)  
                     (if (<= n 1)  
                         acc  
                         (fact-a (sub1 n) (* n acc))))])  
    (λ (n) (fact-a n 1))))



So how does this become a loop?

Use variables for the parameters and update them each time through the loop  

(define (fact-a n acc)  
  (if (<= n 1)  
      acc ; return the accumulator  
      (fact-a (sub1 n) (* n acc))))

becomes (pseudocode)  

def fact-a(n, acc):  
  loop:  
    if n <= 1:  
      return acc  
    n, acc = n - 1, n * acc



Is this procedure tail recursive?  

(define (length lst)

  (cond [(empty? lst) 0]

        [else (+ 1 (length (rest lst)))]))

A. Yes


B. No


C. It depends on how long the list is
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Is this procedure tail recursive?  

; Return the nth element of lst

(define (list-ref lst n)

  (cond [(empty? lst) (error 'list-ref "List too short")]

        [(zero? n) (first lst)]

        [else (list-ref (rest lst) (sub1 n))]))

A. Yes


B. No


C. I have no idea!
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Two strategies for tail recursive procedures

Accumulator-passing style with one or more accumulator parameters


‣ Usually, the procedure we really want doesn't have these parameters


‣ Use helper functions


Continuation-passing style


‣ This uses something called continuations which we'll talk about later in the 

semester



Let's write some tail-recursion procedures

(sum lst) — Add all the numbers in the lst


(maximum lst) — Find the maximum value in a nonempty list


(reverse lst) — Reverses the list lst


(remove* x lst) — Remove all instances of x from lst


(remove x lst) — Remove the first instance of x from lst


