
Stephen Checkoway

Programming Abstractions
Week 2: Environments and Closures

Using variables

Recall that when Racket evaluates a variable, the result is the value that the

variable is bound to

‣ If we have (define x 10), then evaluating x gives us the value 10

‣ If we have (define (foo x) (- x y)), then evaluating foo gives us the

procedure (λ (x) (- x y)) along with a way to get the value of y

Racket needs a way to look up values that correspond to variables: an

environment

Environments

Environments are mappings from identifiers to values

There's a top-level environment containing many default mappings

‣ list ↦ #<procedure:list>  

(↦ is read as "maps to", #<procedure:xxx> is how DrRacket displays

procedures)

‣ + ↦ #<procedure:+>

Each file in Racket (technically, a module) has an environment that extends the

top-level environment that contains all of the defines in the file

Basic operations on environments

Lookup an identifier in an environment

Bind an identifier to a value in an environment

Extend an environment

‣ This creates a new environment with mappings from identifiers to values as

well as a reference to the environment being extended

‣ The extended and original environment may both contain mappings for the

same identifier

Modify the binding of an identifier in an environment (we will avoid doing this in

this course)

Looking up an identifier in an environment

If an identifier has been bound in the current environment, its value is returned

Otherwise, if the current environment extends another environment, the

identifier is (recursively) looked up in the other environment.

Otherwise, there's no binding for the identifier and an error is reported

Consider the environments where (A → B means A extends B).

 

What is the value of looking up count in the left-most environment?

A. Error: count is undefined in that environment

B. 3

C. A procedure

6

Identifier Value

+ #<procedure:+>

count #<procedure>

max #<procedure>

… …

Identifier Value

name "steve"

count 3

max 27

Identifier Value

w -8

x 22

y 19

z 6

Adding a new mapping to an environment
(define identifier s-exp)

define will add identifier to the current environment and bind the value

that results from evaluating s-exp to it

In any environment, an identifier may only be defined once

‣ except in the interpreter which lets you redefine identifiers

Adding a new mapping to an environment
(define (identifier params) body)

Recall that (define (foo x y) body) is the same as  

(define foo (λ (x y) body))  

in that it binds the value of the λ-expression, namely a closure, to foo

A closure keeps a reference to the current environment in which the λ-

expression was evaluated

Extending an environment
Calling a closure

Calling a closure extends the environment of the closure with the values of the

arguments bound to the procedure's parameters

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (average lst)  
 (/ (sum lst) (length lst)))  
 
Calling (average '(1 2 3)) extends the environment of average (namely the

module's environment which contains mappings for sum and average) with the

mapping lst ↦ '(1 2 3) and runs average with that environment

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Extending an environment
(let ([id1 s-exp1] [id2 s-exp2]…) body)

let enables us to create some new bindings that are visible only inside body

(let ([x 37] ; binds 37 to x  
 [y (foo 42)]) ; binds the result of (foo 42) to y  
 (if (< x y)  
 (bar x)  
 (bar y)))

x and y are only bound inside the body of the let expression

That is, the scope of the identifiers bound by let is body

(define (sum lst)

 (if (empty? lst)

 0

 (+ (first lst) (sum (rest lst)))))

(define (average lst)

 (/ (sum lst) (length lst)))

(let ([sum 10])

 (average (list 0 sum)))

While computing  

(average (list 0 sum)),  

which of the following is

average's environment (arrow

means points at an environment

being extended)?

12

lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environment

lst (list 0 sum) sum #<procedure>

average #<procedure>

Top-level environment

lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environmentsum 10

A.  

B.  

C.

Modifying a binding
(set! identifier s-exp)

set! (read "set bang") can modify an existing binding in an environment

(define (bar)  
 (define x 10) ; We can use define inside procedures  
 (writeln x) ; Output the value of x  
 (set! x 25)  
 (writeln x))

This outputs 10 on one line and then 25 on another

This type of side-effect makes reasoning about code much harder

Except for one time later in the semester, we're not going to be using set!

‣ (We won't actually need set!, it just makes things easier)

Variations on let

A common problem

When writing programs, it's not uncommon to define some local variables in

terms of other local variables

Example: Return the elements of a list of numbers that are at least as large as

the first element (the head) of the list, in reverse order

(define (at-least-as-large lst)  
 (cond [(empty? lst) empty]  
 [else  
 (let ([head (first lst)]  
 [bigger (filter (λ (x) (>= x head)) lst)])  
 (reverse bigger))]))

This doesn't work; we can't use head in the definition of bigger

The issue

The issue is the scope of the binding for head: just the body of the let

One (bad) work around would be to use multiple lets

(define (at-least-as-large lst)  
 (cond [(empty? lst) empty]  
 [else  
 (let ([head (first lst)])  
 (let ([bigger (filter (λ (x) (>= x head)) lst)])  
 (reverse bigger)))]))

Sequential let
(let* ([id1 s-exp1] [id2 s-exp2]…) body)

Later s-exps can use earlier ids, e.g., 

(let* ([x 5]  
 [y (foo x)]  
 [z (+ x y)])  
 (bar z y))

Another problem: recursion

Often, we're going to want to define a recursive procedure but we can't do that

with let or let*

(let ([fact (λ (n)  
 (if (<= n 1)  
 n  
 (* n (fact (- n 1))))])  
 (fact 5))

We can't use fact in the definition of fact

Recursive let
(letrec ([id1 s-exp1] [id2 s-exp2]…) body)

All of the s-exps can refer to all of the ids

‣ This is used to make recursive procedures 

(letrec ([fact (λ (n)  
 (if (<= n 1)  
 n  
 (* n (fact (- n 1))))])  
 (fact 5))

Recursive let drawback

The values of the identifiers we're binding can't be used in the bindings

Invalid (the value of x is used to define y)

‣ (letrec ([x 1]  
 [y (+ x 1)])  
 y)

Valid (the value of x isn't used to define y, only when y is called)

‣ (letrec ([x 1]  
 [y (λ () (+ x 1))])  
 (y))

We can use define inside procedures

(define (sum-of-squares lst)  
 (define (sq x) (* x x))  
 (cond [(empty? lst) 0]  
 [else (+ (sq (first lst))  
 (sum-of-squares (rest lst)))]))

Avoiding defining sq each time
See also: premature optimization

(define sum-of-squares2  
 (let ([sq (λ (x) (* x x))])  
 (λ (lst)  
 (cond [(empty? lst) 0]  
 [else (+ (sq (first lst))  
 (sum-of-squares2 (rest lst)))]))))

The environment of sum-of-squares2 contains sq whereas the environment

for sum-of-squares is the module-level environment and sq is defined each

time

Is this worth doing? Probably not. It's much harder to read

Accumulator-passing style

Loops and efficiency

Compare a C (or Java) function to

compute the factorial

int fact(int n) {  
 int product = 1;  
 while (n > 0) {  
 product *= n;  
 n -= 1;  
 }  
 return product;  
}

to our recursive Racket

implementation

(define (fact n)  
 (if (<= n 1)  
 1  
 (* n  
 (fact (- n 1)))))

How do these differ?

In C, just one function call

In Racket, (fact 10) makes 10 calls to fact (the original one and then nine

more)

Loops and efficiency

To be efficient, Racket internally converts all tail-recursions into loops

A function is tail-recursive if the last thing it does is to recurse and return the

result of that recursion

Example: 

(define (foo x y)  
 (if (zero? x)  
 y  
 (foo (sub1 x) (+ x y))))

When the condition is satisfied, some-value is returned, otherwise foo is called

again with some different parameters and that value is returned

Our factorial is not tail recursive

(define (fact n)  
 (if (<= n 1)  
 1  
 (* n  
 (fact (- n 1)))))

The last thing fact does is perform a multiplication; the recursion happens

before the multiplication

Our factorial is not tail recursive

Given (fact 4), we end up with  

(fact 4) => (* 4 (fact 3))  
 => (* 4 (* 3 (fact 2)))  
 => (* 4 (* 3 (* 2 (fact 1))))  
 => (* 4 (* 3 (* 2 1)))  
 => (* 4 (* 3 2))  
 => (* 4 6)  
 => 24

We can see this in DrRacket

Solution: Use an accumulator
(Accumulator-passing style isn't the real name of this technique)

(define (fact2 n)  
 (define (fact-a n acc)  
 (if (<= n 1)  
 acc ; return the accumulator  
 (fact-a (sub1 n) (* n acc))))  
 (fact-a n 1))

Three things to notice

‣ We defined a recursive helper function that takes an additional param

‣ We provide an initial value for the accumulator in fact2's call to fact-a

‣ fact-a is tail-recursive

fact2 is tail-recursive

(fact2 4) => (fact-a 4 1)  
 => (fact-a 3 4)  
 => (fact-a 2 12)  
 => (fact-a 1 24)  
 => 24

We can use letrec instead of an inner define

(define (fact-3 n)  
 (letrec ([fact-a (λ (n acc)  
 (if (<= n 1)  
 acc  
 (fact-a (sub1 n) (* n acc))))])  
 (fact-a n 1)))

(define fact-4  
 (letrec ([fact-a (λ (n acc)  
 (if (<= n 1)  
 acc  
 (fact-a (sub1 n) (* n acc))))])  
 (λ (n) (fact-a n 1))))

So how does this become a loop?

Use variables for the parameters and update them each time through the loop  

(define (fact-a n acc)  
 (if (<= n 1)  
 acc ; return the accumulator  
 (fact-a (sub1 n) (* n acc))))

becomes (pseudocode)  

def fact-a(n, acc):  
 loop:  
 if n <= 1:  
 return acc  
 n, acc = n - 1, n * acc

Is this procedure tail recursive?  

(define (length lst)

 (cond [(empty? lst) 0]

 [else (+ 1 (length (rest lst)))]))

A. Yes

B. No

C. It depends on how long the list is

33

Is this procedure tail recursive?  

; Return the nth element of lst

(define (list-ref lst n)

 (cond [(empty? lst) (error 'list-ref "List too short")]

 [(zero? n) (first lst)]

 [else (list-ref (rest lst) (sub1 n))]))

A. Yes

B. No

C. I have no idea!

34

Two strategies for tail recursive procedures

Accumulator-passing style with one or more accumulator parameters

‣ Usually, the procedure we really want doesn't have these parameters

‣ Use helper functions

Continuation-passing style

‣ This uses something called continuations which we'll talk about later in the

semester

Let's write some tail-recursion procedures

(sum lst) — Add all the numbers in the lst

(maximum lst) — Find the maximum value in a nonempty list

(reverse lst) — Reverses the list lst

(remove* x lst) — Remove all instances of x from lst

(remove x lst) — Remove the first instance of x from lst

